curately via a pulse radiolysis technique. ${ }^{22}$
The time-resolved microwave conductivity measurements were carried out by using the same cell design and microwave circuitry reported previously. ${ }^{18}$ The solutions, of absorbance at approximately unity, were flash photolyzed at 308 nm by using $10-\mathrm{ns}$ fwhm pulses from a Lambda Physik EMG 100 excimer laser with a total incident energy flux per pulse of $6.9 \mathrm{~mJ} / \mathrm{cm}^{2}$ (determined by using (dimethylamino) nitrostilbene ${ }^{18}$ as a secondary actinometer). The response time of detection, controlled mainly by the microwave cavity, was 4 ns. The transient changes in detector output were recorded by using a Tektronix-7912 transient digitizer. Calculated fits to the conductivity transients included corrections for the system response function, the shape of the laser pulse, and the geometrical distribution of products in the cell as described previously. ${ }^{18}$

Materials. Spectrograde solvents were obtained from Merck and used without further purification. Compounds 1 and 2 were both synthesized by a Wittig-type condensation from 1-phenyl-4-piperidone (3), which was prepared as described previously. ${ }^{23,24}$

1-Phenyl-4-(2-naphthylmethylene) piperidine (1). A solution of tri-phenyl-2-naphthylphosphonium bromide (41 mmol , prepared from reaction of triphenylphosphine and 2-(bromomethyl)naphthalene (Aldrich)) in 200 mL of tetrahydrofuran was stirred under dry nitrogen and cooled to $-60^{\circ} \mathrm{C}$. Of n-Butyllithium, 1 equiv (16.3 mL of a $1.6-\mathrm{M}$ solution in n-hexane) was slowly added. After 15 min the reaction mixture was warmed to room temperature and $\mathbf{3}(27 \mathrm{mmol})$ was added. Stirring at room temperature was continued for 60 h , followed by removal of the solvent in vacuo. To the residue 150 mL of $\mathrm{HCl}(20 \%)$ and 300 mL of ether were added. The acid layer were separated and extracted 8 times with ether, made alkaline (pH 13) with NaOH , and again extracted with ether. The latter extracts were dried on MgSO_{4} and concentrated in vacuo. The residue was purified by chromatography over a short silica column by using ethyl acetate/p.a. $60-80(1: 10 \mathrm{v} / \mathrm{v})$ as eluent, followed by recrystallization from a n-pentane/ether mixture: yield, 7.4%, white crystals; mp $87-89^{\circ} \mathrm{C}$; UV (cyclohexane) 249 nm (ϵ $53000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$), $279\left(14000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 288\left(13800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.8-7.8(\mathrm{~m}, 12 \mathrm{H}), 6.5(\mathrm{~s}, 1 \mathrm{H}), 3.4(\mathrm{t}, 2$ $\mathrm{H}), 3.3(\mathrm{t}, 2 \mathrm{H}), 2.7(\mathrm{t}, 2 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H})$; high-resolution mass spec-

[^0]trum, m / z 299.16738. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}$: 299.1674.
1-Phenyl-4-(4-cyano-1-naphthylmethylene)piperidine (2). Triphenyl-1-(4-cyano)naphthylphosphonium bromide (4) was prepared from triphenylphosphine and 4-(bromomethyl)-1-naphthonitrile ${ }^{25}$ in refluxing toluene (yield $\sim 90 \%$). A solution of $4(4.3 \mathrm{mmol})$ in 3 mL of methanol was poured in 10 mL of aqueous 1 N NaOH . The yellow ylide which precipitated from the solution was separated by immediate extraction with 75 mL of benzene. The benzene extract was washed twice with ice-water, dried on magnesium sulfate, and concentrated in vacuo to about 30 mL . The ketone $3(4.29 \mathrm{mmol})$ was then added, and the reaction mixture was refluxed under a nitrogen atmosphere for 28 h . The reaction mixture was transferred into a separating funnel, diluted with benzene (50 mL), washed with water ($3 \times 20 \mathrm{~mL}$), dried on magnesium sulfate, and concentrated in vacuo. The residue was dissolved in warm ethanol/water ($10: 1 \mathrm{v} / \mathrm{v}$) from which, after treatment with activated carbon and filtration, 2 crystallized in light yellow needles. The product was purified by repeated crystallization from ethanol: yield, 5\%; mp $124-125^{\circ} \mathrm{C}$; UV (cyclohexane) $234 \mathrm{~nm}\left(\epsilon 52000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 308(12000$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.8-8.3(\mathrm{~m}, 11 \mathrm{H}), 6.7(\mathrm{~s}$, $1 \mathrm{H}), 3.4(\mathrm{t}, 2 \mathrm{H}), 3.2(\mathrm{t}, 2 \mathrm{H}), 2.7(\mathrm{t}, 2 \mathrm{H}), 2.4(\mathrm{t}, 2 \mathrm{H})$; high-resolution mass spectrum, m / z 324.1627. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 324.1627$.

Acknowledgment. The microwave conductivity experiments were carried out by using the laser facilities of the group of Dr. C. A. G. O. Varma at the University of Leiden with the help of Petra Weisenborn and Robert-Jan Visser for which we are very grateful. We thank L. H. Luthjens and H. C. de Leng for the measurement of the fluorescence lifetimes of 1 and 2 in cyclohexane. The asistance of Frank M. Niele in preparation and identification of compound 1 was of great help. The present investigation was supported, in part, by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

Registry No. 1, 91759-51-2; 2, 91759-52-3.
(25) McCullough, J. J.; MacInnis, W. K.; Lock, C. J. L.; Fagglani, R. J. Am. Chem. Soc. 1982, 104, 4644-4658.

Intramolecular Proton Exchange in 9-Hydroxyphenalen-1-one and Methyl-9-hydroxyphenalen-1-one

Kathryn L. Kunze and Jose R. de la Vega*
Contribution of the Chemistry Department, Villanova University, Villanova, Pennsylvania 19085. Received April 10, 1984

Abstract

A recent ${ }^{13} \mathrm{C}$ NMR study indicates that the fast proton exchange in 9 -hydroxyphenalen-1-one is not eliminated when the symmetry of the potential energy profile for the exchange is destroyed by adding a methyl group to form meth-yl-9-hydroxyphenalen-1-one. Ab initio SCF calculations on 9-hydroxyphenalen-1-one confirm the existence of two equivalent minimum-energy structures with an asymmetric hydrogen bridge. The interconversion between these two structures occurs through a symmetric ($C_{2 v}$) intermediate which is $5.20 \mathrm{kcal} / \mathrm{mol}$ above the minimum-energy C_{s} structures. A $0.64-\AA$ interminimal distance for the resulting double-minimum potential produces a gerade-ungerade splitting of $105.5 \mathrm{~cm}^{-1}$ for the hydrogen and $15.8 \mathrm{~cm}^{-1}$ for the deuterated species, in good agreement with the experimental results of a laser-excited fluorescence and fluorescence-excitation study. Calculations for methyl-9-hydroxyphenalen-1-one gave a $0.46-\mathrm{kcal} / \mathrm{mol}$ energy difference between the two tautomers, in agreement with fluorescence results. The change of the probability density of the proton as a function of time is used to calculate the maximum fraction of the proton that leaks through the barrier. We found that only one-third of the proton will leak to the other well, and this with the frequency increased to $165 \mathrm{~cm}^{-1}$.

In an intramolecular proton exchange, if the initial and final structures are identical, the double-minimum potential for the exchange is symmetric and tunneling will occur whenever barrier and distance between minima are finite. ${ }^{1-4}$ When a change in
(1) J. H. Busch and J. R. de la Vega, J. Am. Chem. Soc., 99, 2397 (1977).
(2) J. D. Swalen and J. A. Ibers, J. Chem. Phys., 36, 1914 (1962).
structure destroys the symmetry of the double-minimum potential, the proton will tunnel only if the barrier is low and the interminimal distance is small, or if the energy difference between the minima is very small. ${ }^{5}$ This approach has been used to explain

[^1]
1

11

111

Figure 1. (I) Initial structure, (II) transition-state structure, and (III) final structure.
the fast interconversion between equivalent tautomers which occurs in naphthazarin despite high barriers of about 25 and $28 \mathrm{kcal} / \mathrm{mol}$ for concerted and stepwise proton exchanges, respectively, but the absence of interconversion between the nonequivalent methylsubstituted tautomers which differ in energy by about 0.9 $\mathrm{kcal} / \mathrm{mol}^{6}{ }^{6}$

9-Hydroxyphenalen-1-one, shown in Figure 1, has a very strong intramolecular hydrogen bond, ${ }^{7}$ but it shows no absorption for the $\mathrm{O}-\mathrm{H}$ stretching vibration in its infrared spectrum. ${ }^{8}$ X-ray crystallography at $298 \mathrm{~K}^{9}$ and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}^{10}$ studies indicate either that the hydrogen bond is symmetric, as in Figure 1 b , or that a rapid interconversion occurs between the two asymmetrically hydrogen bonded structures, as in Figure 1, parts a and c. X-ray photoelectron, ${ }^{11}$ deuteron quadrupole, ${ }^{12}$ and vibronically resolved laser-excited fluorescence and fluorescence excitation in an argon matrix at $4 \mathrm{~K}^{13}$ indicate that the hydrogen bond is asymmetric and that intramolecular proton exchange occurs between two equivalent tautomers. The barrier for the double-minimum potential was estimated to be $23 \pm 12 \mathrm{kcal} / \mathrm{mol} .{ }^{13}$ This estimate was made on the basis of the $9 \pm 1 \mathrm{~cm}^{-1}$ gerade-ungerade splitting of the deuterated species and an interminimal distance of $0.4 \AA$. This interminimal distance was, however, not obtained from any direct measurement but was estimated from general crystallographic data which provide a statistical correlation between the oxygen-oxygen distance and the position of the hydrogen in a hydrogen bridge. With a barrier of this height, the destruction of the symmetry of the double-minimum potential would eliminate tunneling. This destruction of the symmetry can be accomplished by attaching a methyl group in the 2 or 8 position. However, a ${ }^{13} \mathrm{C}$ NMR study ${ }^{14}$ indicates rapid interconversion between the 2and 8 -methyl tautomers of methyl-9-hydroxyphenalen-1-one. The fact that the double-minimum potential is asymmetric is confirmed by fluorescence data ${ }^{15}$ which put the energy difference between the tautomers at $180 \mathrm{~cm}^{-1}$.
To determine why, unlike for naphthazarin, the introduction of a methyl group does not stop fast intramolecular proton exchange, an ab initio quantum-mechanical study was performed on 9 -hydroxyphenalen-1-one and its 2 - and 8 -monomethyl-substituted tautomers. Calculations were performed to determine

[^2]

Figure 2, Diagram with the identities of the atoms and the numbers by which they are referred to in the text and in the tables for 9 -hydroxyphenalen-1-one and the 2 -methyl and 8 -methyl tautomers of methyl-9-hydroxyphenalen-1-one.

Table I. Energies in Atomic Unit of the Optimized Structures Depicted in Figure 1

9-Hydroxyphenalen-1-one			
SCF energy of minimumenergy C_{s} structure			
energy relative to minimum			
initial and final states, $C_{s} 0.0000000$			
transition state, $C_{2 v} \quad 0.0082929$			
Methyl-9-hydroxyphenalen-1-one			
minimum energy structure	2-methyltautomer with methyl group staggered to $\mathrm{C}=\mathrm{O}$		
$\begin{array}{l}\text { SCF energy of minimum } \\ \text { energy structure }\end{array}$			
	2-methyl tautomer	transition State	8-methyl tautomer
methyl staggered to $\mathrm{C}=\mathrm{O}$			
energy rel to min.	0.0000000	0.0086471	0.0007355
energy barrier	0.0086471		0.0079116
methyl eclipsed to $\mathrm{C}=\mathrm{O}$			
energy rel to min.	0.0013516		0.0019671
barrier to rotation	0.0013516		0.0012316
average barrier to rotation of methyl group: 0.0012916			

the extent of asymmetry, if any, in the hydrogen-bonded bridge, the height of the barrier, and the interminimal distance.

Calculations

Ab Initio SCF Calculation of the Potential Energy Profile. Ab initio SCF molecular orbital calculations were used for the electronic energy ${ }^{16.17}$ at the STO-3 G^{1} level ${ }^{18}$ with convergence on the SCF density matrix set at 1×10^{-7} hartree. The significant geometries, two absolute minima and one maximum for 9 -hydroxyphenalen- 1 -one, were determined by using energy gradient optimization methods ${ }^{19}$ with the proper symmetry as a constraint. All geometries turned out to be planar. The geometry for the intermediate structure, which has $C_{2 v}$ symmetry, was optimized to a structure corresponding to a col in the potential energy surface.

[^3]Table II. Bond Distances in Angstroms of the Significant Structures Depicted in Figure 2 for 9 -Hydroxyphenalen-1-one and the 2- and 8 -Methyl Tautomers of Methyl-9-hydroxyphenalen- 1 -one

	initial and final states A, B	transition state C
Bond Lengths		
$\mathrm{C}(11)-\mathrm{C}(10)$	1.4271	1.4201
$\mathrm{C}(9)-\mathrm{C}(10)$	1.3814	1.4246
$\mathrm{C}(8)-\mathrm{C}(9)$	1.4403	1.4707
$\mathrm{C}(7)-\mathrm{C}(8)$	1.3487	1.3381
$\mathrm{C}(13)-\mathrm{C}(7)$	1.4394	1.4629
C(13)-C(11)	1.4041	1.4125
$\mathrm{C}(1)-\mathrm{C}(10)$	1.4891	1.4246
$\mathrm{C}(2)-\mathrm{C}(1)$	1.4984	1.4707
$\mathrm{C}(3)-\mathrm{C}(2)$	1.3244	1.3381
$\mathrm{C}(12)-\mathrm{C}(3)$	1.4793	1.4629
$\mathrm{C}(11)-\mathrm{C}(12)$	1.4294	1.4125
$\mathrm{C}(6)-\mathrm{C}(13)$	1.4204	1.3942
$\mathrm{C}(5)-\mathrm{C}(6)$	1.3627	1.3876
$\mathrm{C}(5)-\mathrm{C}(4)$	1.4124	1.3876
$\mathrm{C}(4)-\mathrm{C}(12)$	1.3705	1.3942
$\mathrm{O}(15)-\mathrm{C}(9)$	1.3658	1.2954
$\mathrm{O}(14)-\mathrm{C}(1)$	1.2425	1.2954
$\mathrm{H}(22)-\mathrm{C}(7)$	1.0843	1.0855
H(21)-C(6)	1.0835	1.0842
$\mathrm{H}(20)-\mathrm{C}(5)$	1.0818	1.0813
$\mathrm{H}(19)-\mathrm{C}(4)$	1.0837	1.0842
$\mathrm{H}(18)-\mathrm{C}(3)$	1.0850	1.0855
$\mathrm{H}(16)-\mathrm{O}(15)$	1.0027	1.1704
$\mathrm{H}(16)-\mathrm{O}(14)$	1.5893	1.1704
Interoxygen Distance		
$\mathrm{O}(14)-\mathrm{O}(15)$	2.5216	2.3065
For 9-Hydroxyphenalen-1-one		
$\mathrm{H}(23)-\mathrm{C}(8)$	1.0816	1.0814
$\mathrm{H}(17)-\mathrm{C}(2)$	1.0821	1.0814

For 2-Methyl-9-hydroxyphenalen-1-one, Staggered and Eclipsed

$\mathrm{C}(17)-\mathrm{C}(2)$	1.524	1.524
$\mathrm{H}(23)-\mathrm{C}(8)$	1.0816	1.0814
$\mathrm{H}(\mathrm{Me})-\mathrm{C}(17)$	1.085	1.085

For 8-Methyl-9-hydroxyphenalen-1-one, Staggered and Eclipsed

$\mathrm{C}(23)-\mathrm{C}(8)$	1.524	1.524
$\mathrm{H}(17)-\mathrm{C}(2)$	1.0821	1.0814
$\mathrm{H}(\mathrm{Me})-\mathrm{C}(23)$	1.085	1.085

All analytical nuclear Cartesian forces ${ }^{17}$ for the optimized geometries were less than 0.0005 hartree/Bohr.

For methyl-9-hydroxyphenalen-1-one, a methyl group was added to the optimized STO-3G structures of 9 -hydroxy-phenalen-1-one at the minima and in the transition state. The positions of the hydrogens in the bridges and of the atoms in the methyl group were then optimized and the corresponding SCF energies determined. Two conformations of the methyl group, eclipsed and staggered, were considered.

The structures with their energies are given in Table I. The configurations are shown in Figure 1. The bond lengths and angles are given in Tables II and III. Table IV gives the Cartesian coordinates of the initial, intermediate, and final states, referred to the center of gravity, and after all the rotations have been eliminated. Computer-generated plots of the relative positions of these geometries are depicted in Figure 3.

Double-Minimum Potential Energy Profile. The sum of a parabola and a Gaussian is used to represent the double-minimum potential (eq 1, ref 5). From the values of the barrier, the interminimal distance, and the curvatures at the minima, the parameters a_{2}, V_{0}, α, and x_{0} of the function were determined. The interminimal distance was taken as the length of the arc connecting the initial and final geometries and was calculated from the values given in Table IV. The curvatures at the stationary points were determined from the change in the energy of the molecule as its geometry changes along the reaction coordinate. The value of

Table III. Bond Angles in Degrees of the Significant Structures Depicted in Figure 2 for 9 -Hydroxyphenalen-1-one and the 2- and 8 -Methyl Tautomers of Methyl-9-hydroxyphenalen-1-one

	initial and final states A, B	transition state C
Bond Angle		
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.398	121.832
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	120.631	121.832
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.603	117.422
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.128	120.207
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(13)$	121.590	122.899
$\mathrm{C}(7)-\mathrm{C}(13)-\mathrm{C}(11)$	118.403	117.863
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	119.878	119.777
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	116.262	117.422
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.408	120.207
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	122.950	122.899
$\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	118.326	117.863
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.424	119.777
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{C}(6)$	119.054	118.859
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(5)$	120.697	120.755
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.214	120.327
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(4)$	119.429	118.859
$\mathrm{C}(12)-\mathrm{C}(4)-\mathrm{C}(5)$	120.907	120.755
$\mathrm{O}(15)-\mathrm{C}(9)-\mathrm{C}(10)$	122.172	119.309
$\mathrm{O}(14)-\mathrm{C}(1)-\mathrm{C}(10)$	120.894	119.309
$\mathrm{H}(16)-\mathrm{O}(15)-\mathrm{C}(9)$	103.711	102.340
$\mathrm{H}(16)-\mathrm{O}(14)-\mathrm{C}(1)$	101.745	102.340
$\mathrm{H}(23)-\mathrm{C}(8)-\mathrm{C}(9)$	118.070	118.022
$\mathrm{H}(22)-\mathrm{C}(7)-\mathrm{C}(13)$	118.226	117.274
$\mathrm{H}(21)-\mathrm{C}(6)-\mathrm{C}(13)$	118.828	119.507
$\mathrm{H}(20)-\mathrm{C}(5)-\mathrm{C}(4)$	119.289	119.837
H (19)-C(4)-C(12)	119.818	119.507
$\mathrm{H}(18)-\mathrm{C}(3)-\mathrm{C}(12)$	116.691	117.274
$\mathrm{H}(17)-\mathrm{C}(2)-\mathrm{C}(1)$	116.739	118.022
$\mathrm{O}-\mathrm{H}-\mathrm{O}$ Oridge Angle		
$\mathrm{O}(15)-\mathrm{H}(16)-\mathrm{O}(14)$	152.507	160.367
For 9-Hydroxyphenalen-1-one		
$\mathrm{H}(22)-\mathrm{C}(8)-\mathrm{C}(9)$	118.070	118.022
$\mathrm{H}(17)-\mathrm{C}(2)-\mathrm{C}(1)$	116.739	118.022

For 2-Methyl-9-hydroxyphenalen-1-one, Staggered and Eclipsed

$\mathrm{H}(22)-\mathrm{C}(8)-\mathrm{C}(9)$	118.070	118.022
$\mathrm{C}(17)-\mathrm{C}(2)-\mathrm{C}(3)$	122.88	122.79
$\mathrm{H}(\mathrm{Me})-\mathrm{C}(17)-\mathrm{C}(2)$	110.65	110.65

For 8-Methyl-9-hydroxyphenalen-1-one, Staggered and

	Eclipsed	
$\mathrm{H}(17)-\mathrm{C}(2)-\mathrm{C}(1)$	116.739	118.022
$\mathrm{C}(22)-\mathrm{C}(8)-\mathrm{C}(7)$	122.31	122.79
$\mathrm{H}(\mathrm{Me})-\mathrm{C}(22)-\mathrm{C}(8)$	110.65	109.65
$\mathrm{H}(\mathrm{Me})-\mathrm{C}(\mathrm{Me})-\mathrm{H}(\mathrm{Me})$	120.00	120.00

Figure 3. Positions of the atoms in the optimized geometries relative to the center of mass and the mutual rotational axes for proton transfer in 9 -hydroxyphenalen-1-one. (a) Initial (C_{s} symmetry) and transition ($C_{2 v}$ symmetry) states; (b) initial (C_{s} symmetry) and final (C_{s} symmetry) states.
the effective mass was taken as the nominal value for the proton or deuteron, as if the proton transfers directly from the initial to the final state through tunneling, independently from the motion of the remaining atoms in the molecule, as is plausible from various

Table IV. Cartesian Coordinates for the Optimized Geometries of the Initial and Final ($C_{2 s}$ Symmetry) and the Transition ($C_{2 v}$ Symmetry) States of 9 -Hydroxyphenalen-1-one Referred to the Center of Mass and Mutual Rotational Axes after Separation of Rotational Dispalcements ${ }^{a}$

atom		initial	transition	final	$S(\mathrm{I}, \mathrm{T})$	S(I,F)
C(10)	X	0.02362	0.00000	-0.02362	0.03163	0.04725
	Z	-0.86429	-0.84326	-0.86429		
C(11)	X	0.01645	0.00000	-0.01645	0.02162	0.03290
	Z	0.56281	0.57683	0.56281		
C(9)	X	1.21866	1.21030	1.25388	0.03823	0.08027
	Z	-1.55731	-1.59461	-1.62944		
C(8)	X	2.46235	2.47430	2.51310	0.01679	0.05255
	Z	-0.83094	-0.84273	-0.81733		
C(7)	X	2.45861	2.46172	2.48049	0.02268	0.02455
	Z	0.51778	0.49531	0.50664		
C(13)	X	1.23043	1.22599	1.21971	0.01087	0.01611
	Z	1.26839	1.27831	1.28041		
C(1)	X	-1.25388	-1.21030	-1.21866	0.05579	0.08027
	Z	-1.62944	-1.59461	-1.55731		
C (2)	X	-2.51310	-2.47430	-2.46235	0.04638	0.05255
	Z	-0.81733	-0.84273	-0.83094		
C(3)	X	-2.48049	-2.46172	-2.45861	0.02193	0.02455
	\underline{Z}	0.50664	0.49531	0.51778		
C(12)	X	-1.21971	-1.22599	-1.23043	0.00662	0.01611
	Z	1.28041	1.27831	1.26839		
C(6)	X	1.20288	1.20365	1.20281	0.01623	0.03772
	Z	2.68851	2.67230	2.65080		
C(5)	X	0.01789	0.00000	-0.01789	0.01794	0.03578
	Z	3.36128	3.36266	3.36128		
C(4)	X	-1.20281	-1.20365	-1.20288	0.02152	0.03772
	Z	2.65080	2.67230	2.68851		
O(15)	X	1.26782	1.15327	1.25333	0.11932	0.05230
	Z	-2.92218	-2.88876	-2.87193		
$\mathrm{O}(14)$	X	-1.25333	-1.15327	-1.26782	0.10147	0.05230
	Z	-2.87193	-2.88876	-2.92218		
H(23)	X	3.38312	3.39897	3.44606	0.01664	0.07095
	Z	-1.39837	-1.40344	-1.36561		
H(22)	X	3.39438	3.39832	3.40290	0.02183	0.01502
	\underline{Z}	1.06554	1.04407	1.07791		
H(21)	X	2.14181	2.13852	2.13632	0.00860	0.02862
	Z	3.22929	3.22134	3.20120		
H(20)	X	0.00068	0.00000	-0.00068	0.00119	0.00136
	\underline{Z}	4.44299	4.44397	4.44299		
H(19)	X	-2.13632	-2.13852	-2.14181	0.02026	0.02862
	Z	3.20120	3.22134	3.22929		
H(18)	X	-3.40290	-3.39832	-3.39438	0.03415	0.01502
	Z	1.07791	1.04407	1.06554		
H(17)	X	-3.44606	-3.39897	-3.38312	0.06041	0.07095
	Z	-1.36561	-1.40344	-1.39837		
H(16)	X	0.30284	0.00000	-0.30284	0.32100	0.60568
	Z	-3.19476	-3.08831	-3.19476		

${ }^{a}$ All distances are in angstrom units. The column labeled $S(\mathrm{I}, \mathrm{T})$ gives the linear dispacement between the initial and transition states. The column labeled $S(\mathrm{I}, \mathrm{F})$ gives the linear displacement between the initial and final states.
experimental and theoretical studies. ${ }^{13,23-26}$
The stationary eigenstates of the Hamiltonian operator for the proton or deuteron were calculated by the variational method. ${ }^{5,21}$ Computer-generated plots of the profiles with the eigenvalues and the eigenfunctions for the lower stationary states are shown in Figure 4, parts a and c . The parameters for these potentials, the eigenvalues and the difference in energy of the lower two levels for the proton and the deuteron, are given in Table V .

Determination of the Time Evolution of the System. The proton was initially localized in one well, as if it were confined to the

[^4]Table V. Values Used to Calculate the Parameters of the Function Fitted to the One-Dimensional Double-Minimum Potential, the Eigenvalues of the Lower Eigenstates in au, the Frequency of Oscillation of the probability Density in Hz , and the Fraction of the Tunneling Nucleus That Reaches the Other Well for the Normal and Deuterated Species of 9-Hydroxyphenalen-1-one and the 2 - and 8-Methyl Tautomers of Methyl-9-hydroxyphenalen-1-one

energy barrier	0.008293		
interminimal distance	1.2128		
energy difference between minima	0.007355		
mass in amu for proton	1.000		
mass in amu for deuteron	2.000		
A_{2}	0.05673		
V_{0}	0.06195		
α	1.72995		
x_{0} (asymmetric case)	0.005346		
Eigenvalues for 9-Hydroxyphenalene-1-one			
proton			deuteron
g_{1}	0.0042562531		
u_{1}	0.0047374172		

Frequency of Oscillation in s^{-1} $0.3166 \times 10^{13} \quad 0.4768 \times 10^{12}$

Energy Difference of the Two Lower Eigenstates in cm^{-1}

$$
105.5 \quad 15.9
$$

Fraction of the Tunneling Reaching the Other Well

position it would have if the system consisted only of one of the minimum-energy structures. This initial state was represented as a normalized Gaussian (eq 13, ref 5). At a given time, the state function of the system is a linear combination of the stationary states multiplied by the corresponding time-dependent factor. ${ }^{5}$ To study the motion of the proton we have, in previous publications, used the expectation value of the position of the proton as a function of time (eq 20, ref 5). However, this method does not show that in near symmetric cases the expectation value of the position of the proton may not reach the other well and yet a fraction of the proton may be found in that well. The use of the probability density as a function of time (eq 19, ref 5) improves the description of the motion of the proton in such near-symmetric potentials. The time evolution of the probability density for the state function representing the tunneling nucleus in the symmetric or the asymmetric profiles was determined and plotted as in Figure 4, parts b and d , along with the expectation value of the position of the proton as a function of time.
The average frequency of the large-amplitude nonharmonic vibration is defined as the number of completed oscillations per unit time taken over an extended period of time.

Results and Discussion

9-Hydroxyphenalen-1-one. For 9-hydroxyphenalen-1-one the two configurations of minimum energy correspond to structures

I and III, one being the mirror image of the other, with no axis of symmetry (symmetry group C_{s}). When compared to the X-ray crystal structure, ${ }^{9}$ most of the bond lengths and angles for the structure of minimum energy were within 0.02 or $0.03 \AA$ or 5° as expected when the STO-3G basis set is used. ${ }^{19,22}$

Structure II represents the intermediate for a proton exchange between the two minimum-energy tautomers and has a twofold axis of symmetry which contains the intervening hydrogen (symmetry group $C_{2 v}$). As can be seen from Table IV and Figure 3, parts a and b, except for the $\mathrm{C}(9)-\mathrm{C}(10), \mathrm{C}(1)-\mathrm{C}(10), \mathrm{C}-\mathrm{O}$, and $\mathrm{O}-\mathrm{H}$ bond lengths, the bond lengths and angles of the transi-tion-state structure, as well as those of the final structure, did not differ by more than $0.03 \AA$ or 2°, respectively, from those of the initial structure. This indicates that the interconversion takes place with very little movement of the atoms of the ring system.

The barrier for the interconversion between the two mini-mum-energy C_{s} geometries was found to be $5.20 \mathrm{kcal} / \mathrm{mol}$. This barrier height value is considered reliable since the STO-3G basis set is known to be successful in the calculation of differences in energies of structures in which the number of each kind of chemical bond is conserved. ${ }^{22}$

Table IV and Figure 3, parts a and b, show that the $C-O-$ $\mathrm{H}-\mathrm{O}-\mathrm{C}$ atoms move considerably less by moving directly from one structure of minimum energy to the other than by moving along a path that would include the symmetric intermediate. An interminimal distance of $0.64 \AA$ was obtained for this direct transfer path. The effective mass was taken as the nominal value for the proton or deuteron, as if the proton transfers directly from the initial to the final state through tunneling, independently from the motion of the remaining atoms in the molecule, as was found in various experimental and theoretical studies. ${ }^{13,23-26}$

As can be seen in Figure 4a, the two eigenstates which have energies below the barrier form a gerade-ungerade pair with eigenfunctions extending over both wells. The frequencies of the gerade-ungerade splittings were found to be $0.317 \times 10^{13} \mathrm{~s}^{-1}$ for the normal and $0.477 \times 10^{12} \mathrm{~s}^{-1}$ for the deuterated species, corresponding to wavenumbers of 105.5 and $15.9 \mathrm{~cm}^{-1}$, respectively, in good agreement with the results from fluorescence spectra, measured as $9 \pm 1 \mathrm{~cm}^{-1}$ for the deuterated species and estimated at $127 \pm 10 \mathrm{~cm}^{-1}$ for the normal species. ${ }^{13}$

In previous publications, ${ }^{5,16,21}$ the motion of a tunneling nucleus in a double-minimum potential was calculated from the expectation value of the position of the proton as function of time. The present method shows that the proton, when its expectation value is within the barrier, should not necessarily be considered as localized in the barrier. In Figure 4b, both the probability density of the proton and the expectation value of the position of the proton are shown as functions of time. It is clear that the probability density in the classically forbidden region is always very small. When the expectation value of the position of the proton is in this region, the probability density has two maxima, one in each well. The description of the tunneling proton is improved by taking into account the weighted average of its density in each well. This density alternately increases and decreases as the system evolves in time. Only the tailing edges of the probability density are found inside the barrier. For normal and deuterated 9 -hydroxy-phenalen- 1 -one, all of the tunneling nucleus reaches the other well with the frequency of the respective gerade-ungerade splitting.

The probability density of the state function is a superposition of the projections onto each well. For molecules with high tunneling rates, methods such as microwave, infrared, photoelectron, or quadrupole coupling spectroscopy in which the time scale is $10^{-9} \mathrm{~s}$ or less, would detect an asymmetric hydrogen bond because they detect the protonic density as being in one well or the other at any given time. However, for experimental methods with slower time scales, such as NMR, the system would appear as if it had a symmetric hydrogen bond.

Methyl-9-hydroxyphenalen-1-one. The introduction of a methyl group destroys the symmetry of the profile. Conformations of the methyl group with a $\mathrm{C}-\mathrm{H}$ bond staggered to the $\mathrm{C}=\mathrm{O}$ bond were found to be of lower energy than those of the eclipsed form. The energy for the 8 -methyl tautomer is $0.461 \mathrm{kcal} / \mathrm{mol}$ or 154

Figure 4. Double-minimum potential energy profiles, some of the lower eigenvalues and the corresponding eigenfunctions of the stationary eigenstates, and the time evolution of the probability density and of the expectation value of the position for the tunneling nucleus initially localized in one well for 9 -hydroxyphenalen- 1 -one (\mathbf{a}, b) and methyl-9-hydroxyphenalen-1-one (c, d).
cm^{-1} above that of the 2-methyl tautomer, which has the methyl group attached to the ring with the $\mathrm{C}=\mathrm{O}$ group, in agreement with the value estimated from fluorescence spectroscopy. ${ }^{15}$ This corresponds to an equilibrium constant of 0.459 and a 2 - to 8 methyl tautomer ratio of $2: 1$ at 298 K , in agreement with the ${ }^{13} \mathrm{C}$ NMR study. ${ }^{14}$ The top of the barrier for the proton exchange between the tautomers is represented by structure II, with an energy $5.42 \mathrm{kcal} / \mathrm{mol}$ above that of the minimum-energy structure.
The double-minimum potential for methyl-9-hydroxy-phenalen-1-one is slightly asymmetric with an energy difference between the minima of $0.461 \mathrm{kcal} / \mathrm{mol}$ and an average barrier of $5.2 \mathrm{kcal} / \mathrm{mol}$. As can be seen in Figure 4c, the eigenfunctions of the two eigenstates which have energies below the barrier, although largely localized in their respective wells by this slight asymmetry, do penetrate into the other well, signifying that tunneling occurs. The energy difference between the two lowest eigenstates is $5.03 \times 10^{12} \mathrm{~s}^{-1}$ for the normal and $4.52 \times 10^{12} \mathrm{~s}^{-1}$ for the deuterated species, corresponding to wavenumbers of 168 and $151 \mathrm{~cm}^{-1}$, respectively, in agreement with estimates of 199 and $170 \mathrm{~cm}^{-1}$, respectively, from fluorescence spectroscopy results. ${ }^{15}$ Figure 4 d shows that the expectation value of the position of the tunneling nucleus does not penetrate into the other well, but when the expectation value reaches its maximum inside of the barrier, the probability density of the initially localized state function is divided between the wells. Three-tenths of the proton, but less than three-hundredths of the deuteron, reaches the other well with each oscillation, the frequency of each being equal to the energy difference between its two lowest eigenstates.

Conclusion

A barrier of $5.20 \mathrm{kcal} / \mathrm{mol}$ and an interminimal distance of 0.64 \AA were found for intramolecular proton exchange in 9 -hydroxy-phenalen-1-one, with frequencies of gerade-ungerade splittings of $105.5 \mathrm{~cm}^{-1}$ for the hydrogenated and $15.9 \mathrm{~cm}^{-1}$ for the normal and deuterated species, respectively. The difference in energy
between the tautomers of methyl-9-hydroxyphenalen-1-one was found to be $154 \mathrm{~cm}^{-1}$, in good agreement with the results from laser-excited fluorescence and fluorescence-excitation spectroscopy. ${ }^{13,15}$ The time evolution of the probability density of the initially localized state function demonstrates that, for the symmetric case, the proton or deuteron reaches the other well at the frequencies of their respective gerade-ungerade splittings. For the asymmetric case, three-tenths of a proton, but less than three-hundredths of a deuteron, reaches the other well with each oscillation of frequency equal to the energy difference between the two lowest eigenstates, 5.03×10^{13} and $4.52 \times 10^{13} \mathrm{~s}$, respectively.

Although the introduction of the methyl substituent destroys the symmetry of the double-mininum potential, the rate is fast because the barrier, the interminimal distance, and the difference in energy between the two tautomers are small for this nearly symmetric potential energy profile. This explains the NMR spectra interpreted as showing that methylnaphthazarin does not have proton exchange, but methyl-9-hydroxyphenalen-1-one does.

Tunneling in near symmetric cases deserves special attention. In symmetric cases, one can calculate tunneling from the energy difference between the gerade-ungerade pair. This is so because
the proton will spend equal time in each well, and tunnelling will depend on the frequency with which the proton oscillates between the wells. When the profile is asymmetric, the fraction of the proton that leaks to the other well decreases as the energy difference between the minima increases. It has been found ${ }^{26}$ that this fraction depends on the ratio of the energy difference between the minima and the tunneling splitting in the corresponding symmetric case. In the present study the fraction of the proton that leaks to the other well is reduced from unity in the symmetric case to one-third in this nearly symmetric case, while the frequency with which the maximum leakage occurs increases by 60%.

Acknowledgment. We thank Professor L. M. Jackman of the Pennsylvania State University for stimulating our interest in 9 -hydroxyphenalen-1-one, Professor J. H. Busch of Villanova University for his helpful discussions, Timothy Ay of the Villanova University Computer Center, Dr. Eugene M. Fluder from Merck Sharp and Dohme, and the staff of the Villanova University Computer Center for their help with the various programs.

Registry No. 9-Hydroxyphenalen-1-one, 7465-58-9; 2-methyl-9-hydroxyphenalen-1-one, 78229-05-7; 8-methyl-9-hydroxyphenalen-1-one, 91742-22-2.

Two-Dimensional Heteronuclear NOE (HOESY) Experiments: Investigation of Dipolar Interactions between Heteronuclei and Nearby Protons

Chin Yu and George C. Levy*
Contribution from N.I.H. Biotechnology Research Resource for Multinuclei NMR and Data Processing, Department of Chemistry, Syracuse University, Syracuse, New York 13210. Received March 19, 1984

Abstract

Heteronuclear 2-D NOE (HOESY) experiments were applied to the study of dipolar interactions between heteronuclei and nearby protons. The dipolar interactions between quaternary carbons and protons were studied in two cases: camphor and fluoranthene. Solvent-solute dipolar interactions between phosphorus and protons were investigated for adenosine triphosphate in water. In $\mathrm{D}_{2} \mathrm{O}$, NOEs were observed between α - and β-phosphates and C 5 ' protons; the α-phsophorus also shows a weak cross peak with $\mathrm{H}-8^{\prime}$, consistent with the expected anti conformation for ATP in solution.

The nuclear Overhauser effect arises from changes in spin populations due to dipolar relaxation in the presence of double irradiation. For example, applying wide-band ${ }^{1} \mathrm{H}$ decoupling results in observed ${ }^{13} \mathrm{C}$ signals which are enhanced by a factor (NOEF) of up to 1.98 , due to the disturbance of the Boltzman distribution of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ dipolar-coupled spins. ${ }^{1}$ NOE not only enhances ${ }^{13} \mathrm{C}$ sensitivity but also provides valuable information for molecular dynamics ${ }^{2}$ and structure elucidation. Since NOE is related to $\left(r_{\mathrm{AB}}\right)^{-6}$, the distance between two dipolar interacting spins A and B can in principle be calculated.

Einst and co-workers ${ }^{3-5}$ developed a homonuclear 2-D experiment to observe NOE phenomena. The technique is able to simultaneously resolve many individual spin NOE effects, even in complex systems. ${ }^{6}$

[^5]In preliminary reports our group ${ }^{7}$ and Rinaldi ${ }^{8}$ presented a heteronuclear 2-D NOE experiment for the investigation of heteronuclear dipolar interactions. The pulse sequence for the heteronuclear 2-D NOE experiment is shown in Figure 1A, and the vector model that describes the I spin magnetization is shown Figure 1B. For the simple system of 2 spins, $I\left({ }^{1} \mathrm{H}\right.$ in this case) and S (observed nucleus: ${ }^{13} \mathrm{C}$ or ${ }^{31} \mathrm{P}$), the components of I magnetization $M(\alpha)$ and $M(\beta)$ corresponding to the two S spin states can be represented by the vectors α and β. After an initial 90° (I) pulse (Figure 1 Ba), the two vectors precess for a period of time, $t_{1} / 2$, and accumulate a relative phase angle of $\pi J t_{1}$ (Figure 1 Bb). Following a 180° pulse on S, the two spin-state labels interchange (Figure 1Bc), and further precess for another ($t_{1} / 2$) period, causing the two vectors to become refocused (Figure 1Bd). So far, the two I magnetization vectors remain parallel at the end of the evolution period, and no magnetization transfer has occurred; this means that scalar interactions between I and S have

[^6]
[^0]: (22) Luthjens, L. H.; Haas, M. P. de; Leng, H. C. de; Hummel, A.; Beck, G. Radiat. Phys. Chem. 1982, 19, 121-123.
 (23) Baty, J. D.; Jones, G.; Moore, C. J. Chem. Soc. C 1967, 2645-2647.
 (24) Gallagher, M. J.; Mann, F. G. J. Chem. Soc. 1962, 5110-5120.

[^1]: (3) M. C. Flanigan and J. R. de la Vega, Chem. Phys. Lett., 21, 521 (1973).
 (4) J. R. de la Vega, Acc. Chem. Res., 15, 185 (1982).

[^2]: (5) M. C. Flanigan and J. R. de la Vega, J. Chem. Phys., 61, 1882 (1974).
 (6) J. R. de la Vega, J. H. Busch, J. H. Schauble, K. L. Kunze, and B. E. Haggert, J. Am. Chem. Soc., 104, 3295 (1982).
 (7) (a) R. C. Haddon, F. Wudl, M. L. Kaplan, J. H. Marshall, R. E. Cais, and F. B. Bramwell, J. Am. Chem. Soc., 100, 7629 (1978). (b) R. C. Haddon, J. Am. Chem. Soc., 102, 1807 (1980).
 (8) Y. Demura, T. Kawato, H. Kanatoml, and I. Murase, Bull. Chem. Soc. Jpn., 18, 2820 (1975).
 (9) C. Svensson, S. C. Abrahams, J. L. Bernstein, and R. C. Haddon, J. Am. Chem. Soc., 101, 5759 (1979).
 (10) Reference 5 a of ref 11.
 (11) R. S. Brown, A. Tse, T. Nakashima, and R. C. Haddon, J. Am. Chem. Soc., 101, 3157 (1979).
 (12) L. M. Jackman, J. C. Trewella, and R. C. Haddon, J. Am. Chem. Soc., 102, 2519 (1980).
 (13) R. Rossetti, R. C. Haddon, and L. E. Brus, J. Am. Chem. Soc., 102, 6913 (1980).
 (14) L. M. Jackman, Pennsylvania State University, private communication.
 (15) R. Rossetti, R. Rayford, R. C. Haddon, and L. E. Brus, J. Am. Chem. Soc., 103, 4303 (1981).

[^3]: (16) J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn, and J. A. Pople, gaussian 80, Car-negie-Mellon University, Pittsburgh, Pennsylvania 15213.
 (17) J. A. Pople, H. B. Schlegal, R. Krishnan, D. J. DeFrees, J. S. Binkley, M. J. Frisch, R. A. Whiteside, R. J. Hout, and W. J. Hehre, Proceedings of the Sanibel Symposium, March 1981.
 (18) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969).
 (19) F. Bernardi, H. B. Schlegel, and G. Tonachini, J. Mol. Struct., 48, 248 (1978).

[^4]: (20) E. M. Fluder and J. R. de la Vega, Chem. Phys. Lett., 59, 454 (1978).
 (21) W. J. Hehre, Acc. Chem. Res., 9, 399 (1976).
 (22) E. M. Fluder and J. R. de la Vega, J. Am. Chem. Soc., 100, 5265 (1978).
 (23) (a) S. Kato, H. Kato, and K. Fukui, J. Am. Chem. Soc., 99, 684 (1977). (b) K. Fukui, Acc. Chem. Res., 14, 363 (1981).
 (24) S. L. Baughcum, R. W. Duerst, W. F. Rowe, Z. Smith, and E. B. Wilson, J. Am. Chem. Soc., 103, 6296 (1981).
 (25) R. Rossetti and L. E. Brus, J. Chem. Phys., 73, 1546 (1980).
 (26) H. Hameka and J. R. de la Vega, J. Am. Chem. Soc., in press.

[^5]: (1) Noggle, J. H.; Schirmer, R. E. "The Nuclear Overhauser Effect"; Academic Press: New York, 1971.
 (2) Lyerla, J. R.; Levy, G. C. "Topics in Carbon-13 NMR spectroscopy"; John Wiley and Sons: New York, 1974.
 (3) Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95.
 (4) Macura, S.; Huang, Y.; Suter, D.; Ernst, R. R. J. Magn. Reson. 1981, 43, 256 .
 (5) Macura, S.; Wūthrich, K.; Ernst, R. R. J. Magn. Reson. 1982, 46, 269.

[^6]: (6) Boesch, C.; Kumar, A.; Bauman, R.; Ernst, R. R.; Wüthrich, K. J. Magn. Reson. 1981, 42, 159.
 (7) Yu, C.; Levy, G. C. J. Am. Chem. Soc. 1983, 105, 6694.
 (8) Rinaldi, P. L. J. Am. Chem. Soc. 1983, 105, 5167.

